From 1 - 10 / 39
  • The High Quality Geophysical Analysis (HiQGA) package is a fully-featured, Julia-language based open source framework for geophysical forward modelling, Bayesian inference, and deterministic imaging. A primary focus of the code is production inversion of airborne electromagnetic (AEM) data from a variety of acquisition systems. Adding custom AEM systems is simple using Julia’s multiple dispatch feature. For probabilistic spatial inference from geophysical data, only a misfit function needs to be supplied to the inference engine. For deterministic inversion, a linearisation of the forward operator (i.e., Jacobian) is also required. HiQGA is natively parallel, and inversions from a full day of production AEM acquisition can be inverted on thousands of CPUs within a few hours. This allows for quick assessment of the quality of the acquisition, and provides geological interpreters preliminary subsurface images of EM conductivity together with associated uncertainties. HiQGA inference is generic by design – allowing for the analysis of diverse geophysical data. Surface magnetic resonance (SMR) geophysics for subsurface water-content estimation is available as a HiQGA plugin through the SMRPInversion (SMR probabilistic inversion) wrapper. The results from AEM and/or SMR inversions are used to create images of the subsurface, which lead to the creation of geological models for a range of applications. These applications range from natural resource exploration to its management and conservation.

  • The Exploring for the Future program Showcase 2023 was held on 15-17 August 2023. Day 1 - 15th August talks included: Resourcing net zero – Dr Andrew Heap Our Geoscience Journey – Dr Karol Czarnota You can access the recording of the talks from YouTube here: <a href="https://youtu.be/uWMZBg4IK3g">2023 Showcase Day 1</a>

  • The Exploring for the Future (EFTF) program is an Australian government initiative to boost investment in resource exploration and development in Australia, and is committed to supporting a strong economy, resilient society and sustainable environment for the benefit of Australians. There are a number of interrelated projects within the EFTF, including the Australia’s Resources Framework (ARF) project. The latter is a continental-scale project aimed at laying the foundations for a national view of Australia’s surface and subsurface geology, to underpin our understanding of the continent’s mineral, energy and groundwater potential. The ARF project involves new, large-scale data acquisition, advances in big data analytics and tailored resource assessments, to support the resource sector, agriculture, remote communities and the environment, and contribute to community safety. As part of ARF, Geoscience Australia has been undertaking studies of Australian basins that are prospective for, or have potential for, basin-hosted base metal mineral systems (Pb-Zn, Co-Cu), as part of the basins module. The first component of this module (2016-2020) investigated the Paleoproterozoic to Mesoproterozoic greater McArthur Basin system, Northern Territory and western Queensland (Champion et al., 2020 a, b, c; Huston et al. 2020). The 2020-2024 module is focusing on the Neoproterozoic part of the Stuart Shelf region of the Adelaide Superbasin, South Australia. The Paleo- to Mesoproterozoic sedimentary and volcanic sequences of the Mount Isa–McArthur Basin region of Northern Territory and Queensland are host to a range of world class mineral deposits (Hutton et al., 2012) and include the basin-hosted base metal deposits of the North Australian Zinc Belt, the world’s richest belt of zinc deposits (Huston et al., 2006; Large et al., 2005). These syngenetic (and epigenetic) basin-hosted mineral deposits include McArthur River (formerly HYC) and Century lead-zinc (Pb-Zn) deposits, the Walford Creek Zn-Pb-Cu-Ag deposit (Rohrlach et al., 1998; Large et al., 2005; Hutton et al. 2012) and the Redbank Cu deposit (Knutson et al. 1979). The Neoproterozoic sedimentary sequences of the Stuart Shelf, and their continuation into the Torrens Hinge Zone and Adelaide Rift Complex (Adelaide Superbasin), South Australia, are host to, or form an integral part of, a number of, often historically important, deposits, including the first copper mining region in Australia. These include, amongst others, the Kapunda, Mt Gunson, Cattle Grid, MG14, Windabout, Myall Creek, and Emmie Bluff copper deposits (Lambert et al. 1980, 1984, 1985 1987; Knutson et al. 1983; Coda Minerals 2020, 2021). These deposits are hosted within the Neoproterozoic sediments or along the basal unconformity with older Mesoproterozoic clastic sedimentary rocks (Lambert et al. 1987). This report contains reanalysed geochemical data, and associated sample metadata, for legacy samples collected by the Baas Becking laboratories in the 1970’s from deposits and surrounds in the MacArthur Basin and Stuart Shelf region. This includes samples (mafic igneous rocks, mineralised samples and sedimentary rocks) from the Redbank Cu deposit and surrounds in the McArthur Basin, partly documented in Knutson et al. (1979); samples (sediments, mafic igneous rocks including basement volcanic units (Gawler Range Volcanics), and mineralised samples) from the Mt Gunson deposit and surrounds (Mt Gunson-Lake Dutton area) documented in Knutson et al. (1983, 1992); and a small subset of five samples (sediments, variably mineralised) from the Myall Creek prospect, documented in Lambert et al. (1984). The great majority of these samples are from drill core, with the full list of samples analyses and metadata listed in Appendix A and summarised in Table 1. This data release also includes 52 samples from the Killi Killi Hills regions and surrounds, Tanami, Northern Territory (jobno 9004424), collected by the NTGS and GA, and originally analysed, in the early 1990’s and early 2000’s. These samples included a subset of P2O5-Sr-HREE-enriched Gardiner Sandstone samples from the Killi Killi Hills prospect. These samples are not directly related to the basins project but have been included as they were analysed at the same time as the Stuart Shelf and Redbank samples, and they increase the number of samples and the range of rock types analysed, and so help with statistics for QA/QC purposes. All geochemical data are provided in the appendices, listed by batch. The data can be downloaded via the Geoscience Australia EFTF portal (https://portal.ga.gov.au/persona/eftf).

  • The Groundwater Dependent Waterbodies (GDW) dataset is a subset of the Digital Earth Australia (DEA) Waterbodies product that has been combined with the Bureau of Meteorology’s national Groundwater Dependent Ecosystem (GDE) Atlas to produce surface waterbodies that are known/high potential aquatic GDEs. These aquatic GDEs include springs, rivers, lakes and wetlands. Where known/high potential GDEs intersected a DEA waterbody, the entire DEA waterbody polygon was retained and assigned as a GDW. Additional attributes were added to the waterbody polygons to indicate amount of overlap the waterbody had with the GDE(s) as well as the minimum, mean, median and maximum percentage of time that water has been detected in each GDW relative to the total number of clear observations (1986 to present). This web service will display a variety of layers with spatial summary statistics of the GDW dataset. These provide a first-pass representation of known/high potential aquatic GDEs and their surface water persistence, derived consistently from Landsat satellite imagery across Australia.

  • Exploring for the Future (EFTF) is an Australian Government program led by Geoscience Australia (GA), in partnership with state and Northern Territory governments. The EFTF program (2016-2024) aims to drive industry investment in resource exploration in frontier regions of onshore Australia by providing new precompetitive data and information about their energy, mineral and groundwater resource potential. Under the EFTF program, the Basin Inventory Project undertook a study of petroleum prospectivity of the onshore Eromanga Basin in Queensland and South Australia. Gilmore 1 well in Queensland was selected based on the occurrence of gas and oil shows reported in the well completion report. Sampling of cuttings and cores was done at Geoscience Australia's Petroleum Data Repository in Canberra. Geoscience Australia commissioned a fluid inclusion stratigraphy (FIS) study on the downhole samples. Here, volatile components ostensibly trapped with fluid inclusions are released and analysed revealing the level of exposure of the well section to migrating fluids. Integration of thin section (TS) preparations reveal the extent of gas and fluid trapping within fluid inclusions while microthemometry (MT) gives an estimation of fluid inclusion trapping temperature. For Gilmore 1, FIS analysis was performed on 498 cuttings and 71 cores between 9.1 metres and 4346 metres base depth, together with 22 samples prepared for TS and 4 samples for MT. To support this study, lithostratigraphic tops were compiled by Geoscience Australia. The results of the study are found in the accompanying documents.

  • Exploring for the Future (EFTF) is an Australian Government program led by Geoscience Australia (GA), in partnership with state and Northern Territory governments. The EFTF program (2016-2024) aims to drive industry investment in resource exploration in frontier regions of onshore Australia by providing new precompetitive data and information about their energy, mineral and groundwater resource potential. Under the EFTF program, the Basin Inventory Project undertook a study of petroleum prospectivity of the onshore Eromanga Basin in Queensland and South Australia. Yongala 1 well in Queensland was selected based on the occurrence of gas and oil shows reported in the well completion report. Sampling of cuttings and cores was done at Geoscience Australia's Petroleum Data Repository in Canberra. Geoscience Australia commissioned a fluid inclusion stratigraphy (FIS) study on the downhole samples. Here, volatile components ostensibly trapped with fluid inclusions are released and analysed revealing the level of exposure of the well section to migrating fluids. Integration of thin section (TS) preparations reveal the extent of gas and fluid trapping within fluid inclusions while microthemometry (MT) gives an estimation of fluid inclusion trapping temperature. For Yongala 1, FIS analysis was performed on 418 cuttings and 52 cores between 15.2 metres and 3104.5 metres base depth, together with 22 samples prepared for TS and 3 samples for MT. To support this study, lithostratigraphic tops were compiled by Geoscience Australia. The results of the study are found in the accompanying documents.

  • The Exploring for the Future program Showcase 2023 was held on 15-17 August 2023. Day 2 - 16th August talks included: Highways to Discovery and Understanding Session AusAEM - Unraveling Australia's Landscape with Airborne Electromagnetics – Dr Yusen Ley Cooper Exploring for the Future Data Discovery Portal: A scenic tour – Simon van der Wielen Towards equitable access to regional geoscience information– Dr Kathryn Waltenberg Community engagement and geoscience knowledge sharing: towards inclusive national data and knowledge provision – Dr Meredith Orr Foundational Geoscience Session The power of national scale geological mapping – Dr Eloise Beyer New surface mineralogical and geochemical maps of Australia – Dr Patrice de Caritat Imaging Australia’s Lithospheric Architecture – Dr Babak Hejrani Metallogenic Potential of the Delamerian Margin– Dr Yanbo Cheng You can access the recording of the talks from YouTube here: <a href="https://youtu.be/ZPp2sv2nuXI">2023 Showcase Day 2 - Part 1</a> <a href="https://youtu.be/dvqP8Z5yVtY">2023 Showcase Day 2 - Part 2</a>

  • Exploring for the Future (EFTF) is an Australian Government program led by Geoscience Australia (GA), in partnership with state and Northern Territory governments. The EFTF program (2016-2024) aims to drive industry investment in resource exploration in frontier regions of onshore Australia by providing new precompetitive data and information about their energy, mineral and groundwater resource potential. Under the EFTF program, GA’s National Hydrogen Project and in collaboration with Minerals Resources Tasmania (MRT) undertook a study of hydrogen and helium potential of south-east Tasmania with the sampling of cores from Glenorchy 1 in the surrounds of Hobart. This well was selected based on the availability of core and historic reports of hydrogen-rich natural gases from petroleum exploration wells in the region. Sampling of cores was done at MRT’s Core Repository in Hobart. Geoscience Australia commissioned a fluid inclusion stratigraphy (FIS) study on the downhole samples. Here, volatile components ostensibly trapped with fluid inclusions are released and analysed revealing the level of exposure of the well section to migrating fluids. Integration of thin section (TS) preparations reveal the extent of gas and fluid trapping within fluid inclusions while microthemometry (MT) gives an estimation of fluid inclusion trapping temperature. For Glenorchy 1, FIS analysis was performed on 173 cores between 6 m and 613.9 m base depth, together with 8 samples prepared for TS and 1 sample for MT. To support this study, lithostratigraphic tops were compiled by MRT. The results of the study are found in the accompanying documents.

  • Exploring for the Future (EFTF) is an Australian Government program led by Geoscience Australia (GA), in partnership with state and Northern Territory governments. The EFTF program (2016-2024) aims to drive industry investment in resource exploration in frontier regions of onshore Australia by providing new precompetitive data and information about their energy, mineral and groundwater resource potential. Under the EFTF program, the Basin Inventory Project undertook a study of petroleum prospectivity of the onshore Eromanga Basin in Queensland and South Australia. Betoota 1 well in Queensland was selected based on the occurrence of gas and oil shows reported in the well completion report. Sampling of cuttings and cores was done at Geoscience Australia's Petroleum Data Repository in Canberra. Geoscience Australia commissioned a fluid inclusion stratigraphy (FIS) study on the downhole samples. Here, volatile components ostensibly trapped with fluid inclusions are released and analysed revealing the level of exposure of the well section to migrating fluids. Integration of thin section (TS) preparations reveal the extent of gas and fluid trapping within fluid inclusions while microthemometry (MT) gives an estimation of fluid inclusion trapping temperature. For Betoota 1, FIS analysis was performed on 305 cuttings and 48 cores between 54.9 metres and 2993.3 metres base depth, together with 15 samples prepared for TS and 3 samples for MT. To support this study, lithostratigraphic tops were compiled by Geoscience Australia. The results of the study are found in the accompanying documents.

  • The preserved successions from the Mesoproterozoic Era (1600 to 1000 Ma) are a relatively understudied part of Australian geological evolution, especially considering that this era has a greater time span than the entire Phanerozoic. These rocks are mostly known in variably-preserved sedimentary basins overlying Paleoproterozoic or Archean cratons or at the margins of these cratons. Some metamorphosed equivalents occur within the orogens between or marginal to these cratons. Both energy and mineral resources are hosted in Australian Mesoproterozoic basins, including the highly-prospective organic rich shale units within the Beetaloo Sub-basin (Northern Territory), which form part of the Beetaloo Petroleum Supersystem. The primary aim for this record is to provide a consolidated state of knowledge of Australian basins or successions similar in age to that of the Mesoproterozoic Beetaloo Petroleum Supersystem. The findings of this report will assist prioritising future work, through improved geological understanding and resource prospectivity. This report presents an overview of 14 Mesoproterozoic-age sedimentary basins or successions and their current level of understanding, including location, basin architecture, stratigraphy and depositional environments, age constraints and mineral and energy resources. Basins or successions included in this record are unmetamorphosed or metamorphosed to very low-grade conditions. Recommendations are made for future work to address the main knowledge gaps identified from this review. While some of these basins have been the focus of recent intense study and data acquisition, the extent of knowledge varies broadly across basins. All basins reviewed in this record would benefit from further geochemical and geochronological analyses, and stratigraphic study to better understand the timing of depositional events and their correlation with nearby basins. Elucidation of the post-depositional history of alteration, migration of fluids and/or hydrocarbons would facilitate future exploration and resource evaluation.